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A weak form of ty-orthocompleteness or tr-orthosummability, referred to as the 
Weak Subsequential Interpolation Property, is defined for orthoalgebras. It is 
shown that the class of orthoalgebras that have this property properly contains 
the class of tr-orthoalgebras. The Brooks-Jewett theorem and the Nikodym 
convergence theorem for semigroup-valued finitely additive and s-bounded 
measures defined on an orthoalgebra satisfying the Weak Subsequential 
Interpolation Property are proved. 

1. I N T R O D U C T I O N  

According to Gudder (1988), quantum mechanics is a probabilistic the- 
ory, and a complete description of a quantum mechanical system is given by 
a probability measure on its set of  events. This set of  events fails to form a 
or-field (or a or-complete Boolean algebra), an algebraic structure that provides 
a foundation for classical measure theory. It rather forms a or-complete ortho- 
modular lattice, an algebraic structure less rich than a ~r-field. This has given 
birth to the part on noncommutative measure theory that deals with the study 
of measures and states on non-Boolean orthostructures such as orthomodular 
lattices and posets (Birkhoff and yon Neumann, 1936; Gleason, 1957; Mackey, 
1963; Gudder, 1965, 1988; Greechie, 1971; Cook, 1978; D'Andrea and De 
Lucia, 1991; D'Andrea et al., 1991; De Lucia and Morales, 1988; Rtittimann 
and Schindler, 1989; Navara and Rtittimann, 1991). The nonexistence of a 
tensor product for orthomodular lattices or posets has led to the study of 
orthoalgebras, a more general orthostructure a large class of  which admits a 
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tensor product (Foulis et al., 1992; Foulis and Bennett, 1993). Orthoalgebras 
(resp., tr-orthoalgebras) are apparently the simplest and most natural ortho- 
structures that can carry orthogonally additive (resp., (r-additive) measures 
and thus are basic for the developing field of noncommutative measure theory 
(Rtittimann, 1979, 1989; Dvure~enskij and Rie~an, 1994; Habil, 1994a,b; 
Younce, 1987). 

In this paper, we introduce the Weak Subsequential Interpolation Prop- 
erty and the Weak Subsequential Completeness Property for orthoalgebras. 
Then we prove noncommutative versions of some important theorems from 
classical measure theory; namely, we prove a Brooks-Jewett theorem (Brooks 
and Jewett, 1970), a Nikodym convergence theorem (De Lucia and Morales, 
1988; Diestel and Uhl, 1977), and a Cafiero uniform boundedness theorem 
(Cafiero, 1952) for orthoalgebras that satisfy these properties. Commutative 
versions of these selected theorems have been proven for (r-complete Boolean 
rings by Weber (1986), for Boolean rings that satisfy the Subsequential 
Interpolation Property by De Lucia and Morales (1988), and for Boolean 
algebras that satisfy the Subsequential Interpolation Property by Freniche 
(1984); noncommutative versions have been proven for (r-orthocomplete 
orthomodular posets by Morales (1988) and for orthomodular lattices that 
satisfy the Subsequential Interpolation Property by D'Andrea and De 
Lucia (1991). 

We show that the class of orthoalgebras having the Weak Subsequential 
Interpolation (resp., Completeness) Property contains the class of orthomodu- 
lar lattices having the Subsequential Interpolation (resp., Completeness) Prop- 
erty as defined in D'Andrea and De Lucia (1991). Hence we obtain, as an 
immediate consequence of the above-mentioned theorems, their counterparts, 
which have been established by D'Andrea and De Lucia (1991), for such 
orthomodular lattices. We also show that the class of orthoalgebras that 
have the Weak Subsequential Interpolation Property contains the class of tr- 
orthoalgebras, and thereby get as an immediate consequence of the above- 
mentioned theorems new versions for tr-orthoalgebras. We finally prove a 
Nikodym-Vitali-Hahn-Saks theorem (Cook, 1978; Dunford and Schwartz, 
1957) for (r-orthoalgebras. 

Our presentation is modeled along the lines of that of D'Andrea and 
De Lucia (1991). The proof of the Brooks-Jewett theorem is obtained by 
reducing it to the commutative setting of studying functions on rings of sets, 
and the proof of the Nikodym-Vitali-Hahn-Saks theorem is obtained by 
reducing it to the commutative setting of studying functions on (r-complete 
Boolean algebras. 

Throughout this paper, the symbols ~(X), ~(X), c~(X), and ~(X) denote, 
respectively, the collections of all subsets, all finite subsets, all cofinite 
subsets, and all infinite subsets of a set X. The symbols R, Z, and to denote, 
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respectively, the sets of all real numbers, all integers, and all nonnegative 
integers. The notation := means "equals by definition." 

2. O R T H O A L G E B R A S  HAVING THE W E A K  SUBSEQUENTIAL 
INTERPOLATION PROPERTY 

Definition 2.1. An orthoalgebra (OA) is a quadruple (L, G, 0, 1) where 
L is a set containing two special elements 0, 1 and �9 is a partially defined 
binary operation on L that satisfies the following conditions Vp, q, r e L: 

(OA1) (Commutativity) I f p  G q is defined, then q O p  is defined and 
p O q = q e p .  

(OA2) (Associativity) If q �9 r is defined and p �9 (q G r) is defined, 
then p �9 q is defined, (p �9 q) �9 r is defined, and p �9 (q �9 r) = (p O q) 
|  

(OA3) (Orthocomplementation) For every p e L there exists a unique 
q e L such that p G q is defined andp  �9 q = 1. 

(OA4) (Consistency) If p �9 p is defined, then p = 0. 

We shall write L for the OA (L, O, 0, 1). Let L be an OA and p, q e 
L. We say p is orthogonal to q in L and we write p I q if and only if p G 
q is defined in L. We define p <-- q to mean that there exists r e L such that 
p • r and q = p G r. The unique element q corresponding to p in condition 
(OA3) above is called the orthocomplement of p and is written as p' .  It can 
be easily proved (Foulis et al., 1992) that p • q iff p --< q',  that 0 --< p < 1 
holds for all p e L, that "-<" as defined above is a partial ordering on L, 
that (L, -<, ', 0, 1) is an orthoposet, and that that for all p, q ~ L, 

p<<-q~q  = p O ( p G q ' ) '  

the so-called orthomodular identity (OMI). For p, q E L, p is called a 
subelement of q iff p --< q. If p is a subelement of q, then, by the OMI, q = 
p �9 (p G q') ' .  In this case we define the difference of q and p in L by 

q - p : = ( p G q ' ) '  

An orthomodular poset (OMP) is an orthoalgebra P that satisfies the follow- 
ing condition: 

p, q e L ,  p L q  ~ p v q e x i s t s a n d p v q = p O q  

where p v q denotes the least upper bound of { p, q} in L. A cr-orthocomplete 
OMP is an OMP P in which every countable subset of P has a least upper 
bound. An orthomodular lattice (OML) is an OMP which is also a lattice. 
A Boolean algebra is a distributive OML. 

Let L be an OA. A subset A _ L is called a suborthoalgebra (sub-OA) 
i f0 ,  1 ~ A , p '  E A w h e n e v e r p  E A, a n d p O q  ~ A whenever p, q E A 
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and p _L q. A sub-OA of an OA is, of course, an OA in its own right. If A 
is a sub-OA of L, then for p, q e A the notation p v a q (resp., p ^Z q) stands 
for the least upper bound (resp., the greatest lower bound) of {p, q} as 
calculated in A. 

Definition 2.2. Let L be an OA and A C_ L be a sub-OA. Then A is called: 

(i) A sub-OMP if  p, q ~ A, p / q ~ p v A q exists. 
(ii) A sub-OML if p, q E A ~ p v a q exists. 
(iii) A Boolean subalgebra if it is a distributive sub-OML. 
(iv) A block if  it is a maximal Boolean subalgebra under set-theo- 

retic inclusion. 

A subset X of an OA L is called jointly orthogonal iff X is pairwise 
orthogonal and is contained in a block B of L. In the sequel, we shall use 
the notation 

J(L) := {X C L: Xi s  jointly orthogonal} 

Definition 2.3. (i) An OML L is called a SIP-OML iff it satisfies the 
Subsequential Interpolation Property: For every orthogonal sequence (ai)iEo~ 
C L and for every N e ~(o0, there exist M ~ ~(N) and b ~ L such that 

a i <~ b Vi ~ M, a i <-- b' Vi E to\M 

L is called a SCP-OML iff it has the Subsequential Completeness Property: 
For every orthogonal sequence (ai)i~o, C_ L there exists M ~ 3~(to) such that 
Vi~M ai exists in L. If L is an OA and Q is a sub-OML of  L, then Q is called 
a SIP-sub-OML (resp., SCP-sub-OML) if Q considered as an OML is a SIP- 
OML (resp., SCP-OML). 

(ii) An OA L is called a WSIP-OA (resp., WSCP-OA) iff it satisfies 
the Weak Subsequential Interpolation (resp., Completeness) Property: For 
every sequence (ai) i~ ~ J(L), there exist a subsequence (ai~)k~o, and a SIP- 
sub-OML (resp., SCP-sub-OML) Q of L that contains (aik)k~,,. 

(iii) An OA L is called a cr-orthoalgebra (Habil, 1994a) if for every 
countable X E J(L) we have 

|  V O F  
FE~(XC) 

exists in L. 

Remark 2.4. (1) Every SIP-OML is also a WSIP-OA, but not conversely. 
For example, the OA of Example 2.13 of Foulis et al. (1992), usually referred 
to as the Wright triangle, is a WSIP-OA that is not even an OMP. 

(2) For an OA L, WSCP ~ WSIP, but not conversely, as Freniche's 
example (Freniche, 1984, Theorem 7) shows. 
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(3) Every tr-orthoalgebra is a WSCP-OA (and, hence, a WSIP-OA). 
Indeed, this follows immediately from Theorem 3.11 of Habil (1994a) and 
Definition 2.3. However, the converse need not be true. In fact, Example 3.19 
of Habil (1994b) is an example of a WSCP-OA that is not a o~-orthoalgebra. 

(4) It is not true, in general, that every Boolean subalgebra of a SIP- 
OML has SIP. For instance, the OML ~(o~) has SIP, while the Boolean 
subalgebra B(to) that consists of all finite or cofinite subsets of ~o does not. 

3. PRELIMINARY L E M M A S  

Definition 3.1. Let (S, d) be a pseudometric space. A sequence (Si)iao~ 
C S is said to converge to s in (S, d) and we write limi_~= si = s if, given 
e > O, 3io = io(d, e) ~ o~ such that Vi -> i0 we have d(si, s) < e. An infinite 
series Ei~,, si, (si)i~,, C S, is said to converge (or be summable) to s in 
(S, d) and we write limF~(,o) EiEF Si = S (or simply ~iEto Si = S) if the 
sequence of partial sums (ET=o si),Eo, converges to s. This is equivalent to 
the following: Given e > 0, 3F0 = F0(d, e) E ~(o~) such that VF e ~(o0) 
with Fo C_ F we have d(~i~  F si, s) ~ ~.. We call d semi-invariant if  Vs, t, v 

S, we have d(s + v, t + v) <- d(s, t). Using the semi-invariance of d and 
the triangle inequality, one can easily see that d satisfies the following 
inequality Vs, t, v, w e S: 

d(s + t, v + w) <- d(s, v) + d(t, w). (3.1) 

Definition 3.2. A quadruple (S, +,  0, OR), where S is a set, + is a binary 
operation on S, 0 is a distinguished element of S, and ~ is a uniformity on 
S, is said to be a uniform semigroup if the following axioms are satisfied: 

(S1) The binary operation + is associative and commutative. 
(S2) Vx e S , x + 0  = x .  
($3) The function (x, y) ,-. x + y: S X S --~ S is uniformly continuous. 

It is well known (Page, 1978) that the uniformity OR can be generated 
by a set ~ of continuous pseudometrics d on S that are semi-invariant. A 
sequence (si)~,, C S converges to s in (S, ~ )  if it converges to s in (S, d) 
Vd e ~ .  A series ~i~o, si converges (or is summable) to s in (S, ~ )  if it 
converges to s in (S, d) Vd E ~ .  

Two typical examples of uniform semigroups are R and [0, ~] under 
the usual addition. 

Definition 3.3. Let L be an orthoalgebra and let S be a Hausdorff uniform 
semigroup. A function Ix: L ---) S is called additive if: 

(i) Ix(O) = O; 
(ii) and Ix(G?=I ai) = ~7=1 Ix(ai) for every finite jointly orthogonal subset 

{ a i : i =  1 . . . . .  n} C_L. 
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Since any pair of orthogonal elements in L is jointly orthogonal, then, 
as a consequence of (ii), we have: 

( i i ) ' a , b  c L a n d a  3_ b ~ I x ( a O b )  = ix(a) + Ix(b). 

We shall write a(L, S) for the set of all additive IX: L ---r S. A function 
IX: L --> S is called s-bounded if for every sequence (ai)i~ E J(L) we have 

lim Ix(ai) = 0 
i--->oo 

and IX is called order continuous if for every decreasing sequence (ai)i~o~ 
C L such that/~ieto ai = 0 we have 

lim ~ ( a i )  = 0 
i___>oo 

Let sa(L, S) denote the set of all additive and s-bounded functions on 
L with values in S. A nonempty subset M C_ sa(L, S) is called uniformly s- 
bounded if  for every sequence (ai)iE~o E J(L) we have 

lim Ix(ai) = 0 uniformly in IX ~ M 
i - - -~  

A nonempty subset M C sa(L, S) is called uniformly order continuous if for 
every decreasing sequence (a,-)i~o, C L such that A,-~o, ai = 0, we have 

lim Ix(ai) = 0 uniformly in IX E M 
i--->oQ 

Note that if L is an OMP and Ix: L ~ S is a function, then our definitions 
of additivity, s-boundedness, and order continuity of IX coincide with the 
corresponding definitions given in the literature (De Lucia and Morales, 
1988). This follows from the facts [see Corollary 3.5 and Lemma 4.1 of  
Habil (1994a)] that in an OMP every pairwise orthogonal (resp., decreasing) 
sequence is jointly orthogonal (resp., jointly compatible). 

Henceforth, we assume that L is a WSIP-orthoalgebra, S is a Hausdorff 
uniform semigroup (HUS) with a fixed set ~ of  continuous pseudometrics 
that generate its uniformity, J(L) denotes the set of all jointly orthogonal 
subsets of L, a(L, S) denotes the set of all additive functions on L with values 
in S, and sa(L, S) denotes the set of all s-bounded members of a(L, S). 

The following lemmas will lead to an important lemma which will be 
a key to proving the Brooks-Jewett theorem. 

Lemma 3.4. tx c a(L, S) is s-bounded iff 

for every jointly orthogonal sequence (ai)iEto C L and 
for every sub-OML Q ~ (ai)iEco, we have 
lim Ix(ai A Q .)r = 0 uniformly in x e Q (*) 
i---r 
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Proof  ( ~ ) :  Assume (*) holds. Let (ai)i~o ~ J(L) and let B be a block 
containing (ai)i~,  Then, by (*), 

lim Ix(ai A n X) = 0 uniformly in x ~ B 
i---~r 

Hence, since x = 1 ~ B, we get limi_~= Ix(ai) = 0. Thus IX is s-bounded. 
( ~ ) :  Suppose that Ix is s-bounded. Let (ai)i~,o ~ J(L) and let Q be a 

sub-OML containing (a~)~o. Let d ~ ~ and e > 0 be given. We need to 
show that 3i = i(d, �9 ~ to such that 

d(ix(an A Q x), O) < �9 ~/n >--- i & Vx  ~ Q 

Assume that this is not the case. Since 0 E to, qn(0) E tO, n(0) > 0, and qx0 
Q such that 

d(ix(a.(o) A Q Xo), O) >-- �9 

Since n(0) E to, we find n(1) e to with n(1) > n(0) and xl E Q such that 

d(~(a.o)  A Q XO, O) >-- 

Continuing in this way, we obtain an increasing sequence n(0) < n(1) 
< . . .  in to, and a sequence (xk)~o, C Q such that 

d(ix(a~(k) A Q Xk, O) >-- �9 V k  E to (3.2) 

Set 

C k := an(k) AQxk (k ~ co) 

Since (an(k))ket o C (ai)i~,, and since (ai)i~to is pairwise orthogonal, (a,(k))kEo, 
is pairwise orthogonal. Since subelements of  orthogonal elements are orthogo- 
nal, (Ck)k~,o is pairwise orthogonal, also, Ck ~ Q Vk; so, as Q is a sub-OML, 
Corollary 3.5 of Habil (1994a) shows that (Ck)k~ ~ J(Q). Since it is clear 
that for any sub-OML Q of an OA L, J(Q) C_ J(L), (Ck)k~o~ ~ J(L). Thus, by 
the s-boundedness of ~, we get l imk~  p~(ck) = 0, which contradicts (3.2). m 

Lemma 3.5. Let IX E sa(L, S). If (ai)i~o~ E J (L )  and if (aik)k~,o c_C_ (ai)iEo, 
and Q, a sub-OML containing (a,-~)k~,o, are as provided by WSIP, then for 
every neighborhood V of 0 in S and for every N ~ 5~(to), there exist M E 
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~(N) and b e Q such that 

ai~ <--- b Vk  E M, aik <-- b' Vk  ~ to \M 

and 

Ix(bh Qx) ~ V Vx e Q 

Proof  Let V be a neighborhood of 0 in S and let (Ny)j~,o be a partition 
of to by infinite sets. The hypothesis that Q is a SIP-sub-OML containing 
(aiic)kE~o shows that for every j E to, 3M] E ~(Nj.) and 3bj ~ Q such that 

a~ k <- bj Vk ~ My, aik <- bj Vk ~ to\Mj (1j) 

Let Co := bo and Ck := bk h Q ( /~Qk~l  bj) for k ~ to\{0}. Evidently, the 
sequence (cDk~,o C Q and is pairwise o~thogonal; hence it is jointly orthogonal 
since Q is a sub-OML. Thus, by Lemma 3.4, 

lim Ix(ck h Q X) = 0 uniformly in x s Q 
k--->~ 

Hence 3ko ~ to such that Ix(x h a Cko) ~ V Vx ~ Q. By (1, ko), k E Mko 
aik <- bko, and, since Mko fq My = (~ V j  -4= ko, k ~ Mko ~ aik <- bj Vj  
ko. Therefore 

ai k <-- bko h Q cAak~ bj) = Cko Vk  ~ Mko , j = !  

Also, by (1, k0), 

k e to\Mko ~ ai k ~ b'k ~ <-- b~ V a (v~=Q~ -1 bj) = C~ o 

Thus the conclusion of the lemma is satisfied by b := Cko and M := M~ o. �9 

Corollary 3.6. Let {iXo . . . . .  Ix,} be a subset of sa(L, S). If (ai)i~o, 
J(L) and if (aik)k~o~ C_ (ai)i~o, and Q, a sub-OML containing (aik)k~,o, are as 
provided by WSIP, then for every neighborhood V of 0 in S and for every 
N ~ ~(to), there exist M E .,a(N) and b E Q such that 

aik <-- b Vk  ~ M, aik <- b' Vk  ~ to \M 

and 

Ixj(b ha x) ~ V Vx  E Q & Vj  <- n 
n+ 1 times 

A 
f 

Proof  Let V be a neighborhood of  0 in S. Form T = 'S X . . -  • S ~. Since 
S is a HUS, so is T. Note that the function Ix: L ~ T defined by 
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~(x) := (~o(x) . . . . .  ~.(x)) 
n+l times 

A 
is additive and s-bounded, and V (~+~) = Iz • . . .  • ~) is a neighborhood of 
0 in Z So if (ai)i~o~ �9 J(L) and if (aik)k~o, and Q are as provided by WSIP, 
then, by Lemma 3.5, VN �9 ~(to) 3M �9 ~(N) and 3b �9 Q such that 

aik <- b Vk  �9 M, aik <-- b' Vk  �9 to \M 

and 

tx(b ^a  x) ~ V (n+l) Vx E Q 

Upon recalling that ix(b ^Q x) = (tx0(b ^a  x) . . . . .  txn(b ̂ a  x)), we see that 
this last inclusion means 

~j(b AQ x)  �9 V Vx  E Q & Vj  <- n �9 

Lemma 3.7. Let M �9 3~(to) and let (ai)i~,, �9 J(L). If (aik)kE,o C_C_ (ai)i~o~ 
and Q, a sub-OML containing (aik)k~,,, are as provided by WSIE then 

:= {A �9 ~(M): 3ba �9 Q with aik <- ba Vk  �9 A, aik <- b'~ V k  �9 to\A} 

is a Boolean subring of ~(M) that has SCR and {i} �9 q~ Vi �9 M. 

Proof  Let (ai)i~,, �9 J(L), and let (ai~)k~ and Q be as provided by WSIE 
Let ~ be as defined above. We proceed in steps. 

Step 1. ~ is a subring of ~(M). 
To see this, let AI, A2 �9 c& We must show that A 1 ~.J A2, AI\A 2 �9 (l~. 

Indeed, we have A1 tO A> AI\A2 �9 ~(M) and 3bl, b2 �9 Q such that 

aik<--bj V k  �9 Aj, aik -<bj Vk �9 co\Aj ( j =  1,2) 

This implies that 3b := bl v ~ b2 �9 Q such that 

aik <- b Vk  �9 A 1 tO A2, aik <<- b' Vk  �9 to\(A l tO A2) 

Thus A1 O Az �9 ~. Also, qp := bl ^O b~ �9 Q such that 

aik ~ p Vk  �9 AliA2, aik <--p' Vk  �9 tok(AI\A2) 

Thus AI\A2 �9 ~ and qJ is a Boolean subring of ~(M). 
Step 2. ~ has SCE 
To see this, let (Ar)rE~ be a disjoint sequence in qJ. Then, for every 

r e to, 3 a b r  �9 Q s u c h t h a t  

aik ~ b r Vk  �9 Ar,  aik <-- b'r Vk  �9 t o \ A  r 
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. ,~ Qr- 1 
Let Co := b0 and C r : :  br A Q (/\)=1 b;) for r ~ to\{0}. Evidently, (Cr)r~o, is 
pairwise orthogonal and 

aik <-- C r V k  E A r 8z  V r  ~ to (3.3) 

Consider the countable pairwise orthogonal subset 

K := {cr: r ~ to} U {aik: k E to \UrE ~ Ar} 

of Q. Since Q is a SIP-sub-OML, 3N ~ ~(to) and b E Q such that 

Cr<-b  V r  e N, Cr<-b '  V r  ~ to\N, and 
aik <-- b' V k  ~. t o \ U r ~ t o  m r (3.4) 

We claim that Ure N m r E c4~. To see this, notice that (3.4) implies 

aik <-- b' V k  E to\Ure,o A r (3.4') 

If k ~ Ur~to Ar, then, as the Ar are disjoint, there exists a unique q E to 
such that k ~ Aq. Then, from (3.3), there exists a unique q e to such that 

k e mq and all c <- Cq (3.5) 

Now (3.4) and (3.5) imply that 

aik <- b if k E mq with q E N, 

aik <-b '  if k ~ Aq with q ~ to\N 

that is, 

aik <~ b V k  E Ure N Ar, ai~ <-- b' V k  ~. UrEto\N A r 

and hence, by (3.4'), aik <- b' V k  e t o \ U ~ s  Ar. Thus U r ~ s A r  e ~, as desired. 
S tep3 .  {k} e ~ V k  e M. 
In fact, ko ~ M ~ {ko} ~ ~(M) and, as ( a i k ) ~  is pairwise orthogonal, 

we have 

aik <-- b := ai~ ~ and aik <- a ~  V k  ~ to\{ko} 

Thus {ko} e ~Vk0 e M. �9 

A HUS (S, ~ )  is complete if, for every d e ~ ,  (S, d) forms a complete 
pseudometric space. 

Lemma 3.8. Let ~ e sa(L, S). If (ai)i~o, e J(L), then (~=o Ix(az))kEo, is 
a Cauchy sequence in S. Hence if S is a complete HUS, then (~(ai))i~o~ is 
summable in S. 
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Proof  Let d �9 ~ .  We need to show that for every �9 > 0, 3ko = ko(�9 
�9 to such that 

d(sm, sj) < �9 V m  > j >- ko 

where sk := X~=o Ix(ai) V k  �9 to. Suppose, contrariwise, that this does not 
hold. Then 3 �9  > 0 such that for each k �9 to, 3 j (k ) ,  re(k) �9 to with re(k) > 
j(k)  > k and 

d(s,.(k~, sj(~) > �9 

By the additivity of Ix, we have Sm(k~ = sj(~ + Ix(Gm=(~lk)§ ai). Hence, by the 
semi-invariance of d, we have 

�9 <-- d(sj(k) + Ix(O~(k~)+l ai), sj(k) + O) 

< d( Ix ( r  a,), O) V k  �9 to 

Thus we can successively choose ko < kl < . . .  in to and (j(ko), m(ko)), 
(j(kO, m(kl))  . . . .  in to • to withj(k0) < m(ko) <j (k l )  < m(kl) < . . .  such that 

m(kr) 
d(Ix(l~.t)i=j(kr ) ai), O) > �9 V r  E to 

Set Cr "= G~"-(-~(~,)+1 ai (r �9 to). Evidently, (Cr)rEoJ is pairwise orthogonal; 
hence, the fact that (ai)i~,o �9 J(L) implies that (Cr)rE,o �9 J(L) and therefore 
the preceding inequalities imply that 

d(Ix(Cr), O) > �9 V r  �9 to 

This contradicts the s-boundedness of ix. �9 

Lemma 3.9. Let S be a complete HUS, (xi)s~o, be a summable sequence 
in S, and (Ik)~K be a partition of to such that ( x i ) i~  is summable Vk �9 K. 
Then (~ielk Xi)kEK is summable and s Xi) -~- s Xi" 

Proo f  The proof is found in D'Andrea and De Lucia (1991), (3.1). �9 

Lemma 3.10. Let S be a complete HUS and IX �9 sa(L, S). For every 
(ai)i~o, �9 J(L), the function h: ~(to) -+ S defined by 

k(A) := s ~(ai) [A �9 ~(to)] 

is o--additive. 

Proo f  This follows immediately from Lemmas 3.8 and 3.9. �9 

Lemma 3.11. Let (S, p) be a complete pseudometric semigroup, (IX~)~ 
C_ sa(L, S), and (ai)iE ~ �9 J(L). If (aik)k~ C_ (a i ) i~  and Q D_ (aik)k~ are as 
provided by WSIP, then there exist a decreasing sequence (M/)i~o C $ ((&)~ ~o) 
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and for every i e to an e i e Q such that: 
(1, i) ai~ <- ei k/k ~ Mi, aik <-- e[ Vk  ~ co\Mi. 
(2, i) M i C M i _ l \ { m i n M i - t }  (with M_l := to). 
(3, i) p(iXp(X A Q ei), 0) < 1/(i + 1) Vp <- i and Vx ~ Q. 
(4, i) ei+ 1 <-. ei. 

Proof  Let (ai)i~o, E J(L) and let (aik)k~,o and Q be as provided by WSIP. 
We proceed by induction. Let N = (ik)k~o,\ {0}. By Lemma 3.5, 3M0 E ~(N) 
and 3eo e Q such that 

ai k <- eo Vik E M0, 

and 

aik <: e~ Vik ~ (ik)k~o,\Mo 

p(Ix0(x A Q e0), 0) < 1 Vx e Q 

Let n E to and suppose that e0, el . . . . .  en and M0, M1 . . . . .  M~ have 
been constructed so that they satisfy (1, i), (2, i), and (3, i) for i = 0, 1 . . . . .  
n. Set M := M,\{min Mn}. By Corollary 3.6, 3M,+1 ~ ~(M) and 3b ~ Q 
such that 

and 

aik <- b Vik E Mn+ 1, aik <-- b' Vi~ ~ (ik)k~,\Mk+l 

1 
p(I-~p(XA a b ) , 0 ) < -  Vx ~ Q & V p - < n  + 1 (3.6) 

n + 2  

Set e,+t := b A Q e,. Since, by (1, n), aik <- e, Vi~ E &In and M,+I C M,, we have 

aik <~ b A Q e. = en+ 1 Vii, E Mn+l 

and, since aik <- b' Vik E (ik)k~,o\Mn+l, we have 

aik ~ b' vQ e' = (b A Q e,)' = e'+l Vik ~ (ik)k~o,\M,+l 

Therefore (1, n + 1) is satisfied. We also have M~+I C_ M~\{min M~}, so 
(2, n + 1) is satisfied. Finally, it follows from (3.6) that 

1 
p(~p(XA Qe~A Q b ) , 0 ) < ~  VX ~ Q & V p - < n  + 1 

n + 2  

That is, (3, n + 1) holds and the induction is complete. �9 

Now we are ready to establish the key lemma that will be used in 
proving the main result of this paper in the next section. 

Lemma 3.12. Let (S, p) be a complete pseudometric semigroup and let 
(ix,),~,o C_ sa(L, S). If (an)n~,, ~ J(L) and (a,k)k~,~ _C (a~)n~,o and Q are as 
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provided by WSIP, then there exist a subsequence (ami)ieo~ of (ank)k~o and N 
�9 ~(to) such that: 

(i) ~ := {A �9 ~(N): 3b~ e Q with ami <~ b A Vi  �9 A, ami <<- b'A Vi  �9 
to\A} is a Boolean subring of ~(N) with SCP (see Definition 2.3). 

(ii) {i} �9 ~ Vi �9 N. 
(iii) For any n �9 to, the function h,,: ~ --~ S given by 

hn(A) = ~ i ~ a  I~n(aml) 

is tr-additive and s-bounded. 
(iv) For any A �9 ~3, 3ca �9 Q such that h~(A) = ~n(ca) Vn �9 to. 
(v) For any disjoint sequence (Ar)r~,o C_ ~, there corresponds a sequence 

(Cr)reto �9 J(L) such that 

~kn(Ar) = ~l~n(Cr) Vn, r �9 to 

Proof  Let (a,)n ~ ~ �9 J(L) and let (a,k)k~o, C_ (an), ~ o, and Q be as provided 
by WSIE Use Lemma 3.11 to pick a decreasing sequence (ei)i~o, C_ Q and 
a decreasing sequence (Mi ) i~  C_ ~((nk)k~o,) that satisfy (1, i), (2, i), and 
(3, i). Let m i :---- rain Mi Vi  �9 to. Then (ami)i~ is a subsequence of 
(a,k)k~.,. Note that, for every i �9 to, 

[ami < ei (by (1, i)), ami < e[+l (by (1, i + 1) and (2, i + 1))] 

implies that am~ <-- ei ^Q e'+ b and 

[rap �9 Mi+l Vp  >-- i + 1, mp �9 to\Mi V p  <-- i - 1 

(since Alp C_ M~+l Vp  >- i + 1)] 

implies that 

amp <- ei+l Vp - i + 1 (3.7) 

and 

amp -< e~ 

Now (3.7) and (3.8) imply that amp 

V p - < i -  1 (3.8) 

<- e[ va  ei+l V p  �9 to\{/} and therefore 

-- ' -- 'v Q Vi �9 co & Vj ~ co\{/} ami < e i A Q ei+l, amj < e i ei+l 

(3.9) 

Note that, by (3.9), 

K := {ami:i �9 co} U { e  i A Q e~+ 1 A Q a ' i : i  �9 to} 
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is a countable (pairwise) orthogonal subset of Q. So, as Q is an SIP-sub- 
OML, there exist N e o~(to) and a e Q such that 

Let 

ami <- a Vi  E IV, ami <-- a' V i e  to\N, and 

ei A a e[+l ^a  a' < a' Vi  e to (3.10) mi - -  

:= {A e ~(N): 3ba E Q with ami <- ba V i e  A, ami <- b'A V i e  to\A} 

Then, by Lemma 3.7, q3 is a Boolean subring of ~(N) that has SCP and {i} 
e q3 'v'i e N. Thus (i) and (ii) are proved. 

To prove (iii), note first that, by Lemma 3.10, the function %: g'(to) ---> 
S defined by 

-,/.(A) := Ei~a Ix.(ami) (n e to) 

is or-additive. We claim that h. := ~/n 1~ is s-bounded. To see this, let (Ar),~o, 
be a disjoint sequence in ~3 and use the definition of ~ to pick a sequence 
(b~),~,o C Q such that 

a,ni <- br Vi  E A r ,  aml <- b" Vi  e to \A,  & V r  �9 to 

Write 

Co : = b0, Cr := br ^Q (/~QifO j b~) V r  e to \ { 0 } 

Evidently, (Cr)rE,o is pairwise orthogonal in Q; hence it is jointly orthogonal 
since Q is a sub-OML. Also, 

ami <- C r V i e  A, & Vr e to (3.11) 

Since each Ix, is s-bounded, Lemma 3.4 implies that if V is a (closed) 
neighborhood of 0 in S, then qr0 e to such that 

~l~n(X ̂ Q Cr) E~. V Vr  >- ro & V x  e Q 

Thus, for every r -> ro, we have 

~kn(Ar) = l i m  ~-~ieF I~n(ami) 
Fe  ~(Ar) 

-- lira ~.(| 
F e ~;(A r) 

lim 
F e ,~(Ar) 

t&n(Cr ^Q (v /QeF ami)) E V 

which shows that kn is s-bounded. This proves the claim and, hence, (iii). 
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To prove (iv), let A e q3. Then 3ba ~ Q such that 

ami<-ba  V i  �9 A, ami--< b~ V i ~  to\A (3.12) 

We claim that hn(A) = ~n(eo A Q a A O ba) Vn �9 to. To see this, note first 
that since ei+~ --< ei V i  �9 to, we have 

e0 = (V/Qqo I (ei A Q el+l)) v eq V q  e o~ 

where e - i  :=  0. By the OMI, (3.9) implies ei A ~ e[+l = am i V Q ((ei A Q 
el+0 A ~ a "  i) Vi �9 to; so Vq �9 to, we have 

aq-i 
eo = (Vi=0 v(ei A Q eri+l A a ami)) vQ (vaqo tami) vQ eq 

= Aq v Q Bq 

where 

Aq :--- (Vi~=ff I (el A a e[+l A a a ' i ) )  v Q (vQe[0,;..,q_l}fi(oj\A) am i) 

Q ami) VQ Bq : =  (Vi~{O,...,q-I}AA eq 

Now note that Aq _L a A a ba V q  ~ to. In fact, this follows from: 
(a) aml <-- b'a V i  ~ to\A implies that ami <-. a' v Q b'A = (a A a ba)' for  

every  i e {0 . . . . .  q - 1} f3 (to\A); 
(b) and e i A Q el+ 1 A Q a'  < a'  Vi ~ to [by (3.8)]. mi - -  

Note also that Aq _L Bq V q  �9 to. In fact, this follows from: 
(c) vaqo (el Aa e[+l A a a~ i) <---- AQ~I0,...,q_I}nA am i, eq V q  ~ to; 
(d) and vQel0,...,q_lln(~\A)ami <-- AQ~{0,...,q_IInA a'mi, e'q 'V'q ~ to; 

which can be easily established using the facts that the set 

{ami: i ~ to} U {e i A Q el+ 1 A Q a'mi." i �9 to} 

is pairwise orthogonal and (ei)i~o, is decreasing and by using (3.8). It follows 
that Aq 3._ (a A a bA), Bq Vq �9 to; so the Foul is-Hol land theorem (Kalmbach, 
1983) and the fact that orthogonal elements are disjoint imply that 

a A Q ba A a eo = a A a bA A a (Aq V Q Bq) 

= (a A Q ba A a Aq) v Q (a A Q ba A Q Bq) 

= a A a ba A Q ((vQE{0,...,q-I}nA am i) v Q eq) V q  ~ to. 

Moreover,  c :=  v,.O~ io,....q-lln~ am~ is orthogonal to eq [by (3.8)] and, by (3.10) 
and (3.12), we have 

am~ -< a A Q ba  Vi �9 {0 . . . . .  q - 1 } f) A ~ c -< a A Q ba 
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It follows that cC (a ^Q ba), eq; hence the Foulis-Holland theorem implies that 

a A o ba A o e0 = [a ^a  ba ^Q (vQE{0,...,q-1}nA ami)] v Q (a A Q ba A Q eq) 

Q a,,i) v Q (a A Q ba A Q ea) Vq ~ co ---~ (V iE  {0,...,q- 1 } fqA 

Using the fact that subelements of orthogonal elements of an OA are orthogo- 
nal, it follows t ha t  v/QE{0,...,q-I}nA ami _L a A Q ba A Q eq ~/q E CO. Therefore, 
Vq, n ~ co, we have 

Ixn(a A Q ba A Q eo) = ~i<q,iEA [~n(ami ) "k- I.im(a A Q ba A Q eq) (3.13) 

Now, given e > 0 and n ~ co, choose q0 ~ o~, q0 > n such that (see 
the definition of ",&) 

1 < _r a n d  P(~i<q ieA ~n(ami ), '~tn(m)) "~ �9 Vq >-- qo 
qo 2 ' 2 

By (3, q) of Lemma 3.11, we have 

n < q ~ p(~n(x A Q eq), O) < 1 < e_ Vx ~ Q & Vq >- qo 
q + l  2 

In particular, 

�9 V n < q  & V q > q o  p ( ~ ( a  ^Q ba AQ eq), O) < -~ 

Thus, for every q > qo, we have 

p(Ixn(a A Q ba A Q eo), ~&(A)) (3.13) P(]~i<q,i~A ~n(ami ) 

+ tx,,(a ^Q ba ^Q eq), ~/n(A)) 

(3~) 
-- P(~i<q,i,A ~n(ami), '~n(A)) 

+ p(Ix~(a ^Q ba A Q eq), O) 

< � 9  

Since hn = ~/,1~, this proves the claim and, hence, (iv). 
Finally, we prove (v). Let (Ar)r~o, be a disjoint sequence in q3. For each 

r ~ o~, 3br := bar such that 

aml <~ br Vi ~ Ar, ami --< b" Vi ~ to\At (3.14) 

Set Xo := bo, xr := br ^Q (/~Qr~ bj) for r ~ o~\{0}. Evidently, (Xr)r~o, is a 
pairwise orthogonal subset of Q; and, for every r ~ co, we have 
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arn k ~ X r Vk �9 At, am~ <-- X'r Vk  �9 to\At 

This shows that we may assume that the sequence (br)r~,, in (3.14) is pairwise 
orthogonal and we now make this assumption. Now set c~ := eo /N O a / N Q  br 
(r �9 to). Then, since (br)r~co is pairwise orthogonal, it follows that (c~)r~o, is 
pairwise orthogonal in Q; hence it is jointly orthogonal since Q is a sub- 
OML. Moreover, the second claim above implies that 

X.(A~) = Ixn(c~) Vn, r �9 to �9 

4. THE MAIN RESULTS 

In this section, we shall state and prove the main results of this paper. 
In the sequel, we shall see that many of the results of this section will be 
immediate consequences of the following main result. Unless otherwise 
stated, the symbol sa(L, S) continues to denote the set of all s-bounded and 
additive functions defined on an OA L with values in a HUS S with a fixed 
set 5~ of continuous pseudometrics. 

Theorem 4.1 (Brooks-Jewett Theorem for  WSIP-OAs). Let L be a WSIP- 
OA and (Ixn)n~o, C sa(L, S). If 

lim Ixn(a) = Ixo(a) •a �9 L 
rt--->ao 

Then {Ix,: n �9 to} is uniformly s-bounded. 

Proof. Suppose the contrary. Then we may assume, by passing to a 
subsequence if necessary, that 3d �9 9 ,  9e > 0, and 3 a sequence (aj) j~ �9 
J(L) such that 

d(Ixj(aj), O) > e ~'j �9 to (4.1) 

Consider the following equivalence relation --~ on S: x - y iff d(x, y) = O. 
Then under addition modulo -- the set S := S/~  of all equivalence classes 
becomes a HUS, and d: S x ~ ---> R defined by 

d([x], [y]) := d(x, y) 

is a semi-invariant metric on S. Hence (3, d) is a metric semigroup. Let 7r 
be the natural projection of S onto S. Clearly, ~r is continuous. Let (So, do) 
be the completion of (3, d) and let ~ be the isometric imbedding of (3, d) 
into (So, do). Then ~ is continuous and 

d00,([x]), ~([y]) = d([x], [y]) = d(x, y) Vx, y �9 S (*) 

Let v, := L o ~ o Ix, Vn �9 to. Then the s-boundedness of each Ix, and the 
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continuity of L o "rr imply that each v, is s-bounded. Thus (Vn)n~r C sa(L, 
So). Moreover, 

lim vn(a) = ar(lim Ix,(a)) = 7r o Ix0(a) = vo(a) Va ~ L (4.2) 
n - ~ 0 r  t / - ' - > ~  

Let (a,k)k~o, C (an)nEro and Q ~ (ank)k~ be as provided by WSIP, and use 
Lemma 3.12 to pick a subsequence (ami)i~o ~ o f  (an~)keo ~ and N E ~(to) such 
that the following hold: 

(i) qJ = {A ~ ~(N): 3ba E Q with ami <- ba Vi ~ A, ami ~ b'A Vi E 
A} is a Boolean subring of ~(N) with SCE 

(ii) { i}  ~ ~J Vi  E N.  
(iii) The functions kn: ~J --> So given by 

~kn(A) := ~ieA 1)n(ami) (n ~ to) 

are o--additive and s-bounded. 
(iv) VA e q3, 3ca e Q such that Xn(A) = v,(ca) Vn ~ to. 

Now (4.2) and (iv) imply that 

lim k,(A) = lim vn(ca) = v0(ca) = h0(A) VA ~ ~3 
t/-..>or n --->cr 

Using the fact (De Lucia and Morales, 1988, Theorem 2.1) that in a Boolean 
ring with SCP, the Brooks-Jewett theorem holds, we infer that {h,: n e to} 
is uniformly s-bounded. Hence, if (ik)k~ is a strictly increasing sequence in 
M, then, by (i), ({ik})k~o, is a disjoint sequence in ~; so we have 

lim hn({ik} ) = 0 uniformly in n E to 
k--->~ 

Therefore, using (*), there exists k0 e to such that 

d(~n(am%), O) 

This contradicts (4.1). �9 

: do(Pn(amiko), O) 

= d0(h,({iko}), 0) 

< ~  V n ~ t o  

The following result shows that if S in Theorem 4.1 is assumed to be 
a Hausdorff topological Abelian group, then it is not necessary to hypothesize 
the s-boundedness of IXo. Some authors (Weber, 1986) refer to this type of 
result as a Vitali-Hahn-Saks theorem. 

Theorem 4.2 (Brooks-Jewett Theorem for WSIP-OAs: Group-Valued 
Version). Let L be a WIPS-OA, S a Hausdorff topological Abelian group, 
and (~Ln)nEto\{0} C sa(L, S). If 
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lim Ix.(a) = Ix0(a) Va ~ L 
t / - " ) ~  

then tx0 E sa(L, S) and {Ix.: n ~ to} is uniformly s-bounded. 

Proof Repeat the proof of Theorem 4.1 and use the fact (De Lucia and 
Morales, 1988, Corollaries 2.2 and 2.3) that in a Boolean ring with SCP, the 
group-valued version of the Brooks-Jewett theorem holds to get the desired 
contradiction. �9 

The following result gives a necessary and a sufficient condition for a 
sequence of s-bounded and finitely additive functions defined on a WSIP- 
OA to be uniformly s-bounded. 

Theorem 4.3 (Cafiero's Theorem for WSIP-OAs). Let L be a WSIP-OA 
and (1* , )~  C_ sa(L, S). Then {b~,: n E to} is uniformly s-bounded if and 
only if for every sequence (ai)iEo~ E J(Z) and for every neighborhood V of 
0 in S there exist p, q e to such that 

Ix.(ap) ~ V Vn --> q 

Proof (~ ) :  This part is obvious from the definition of uniform s-bound- 
edness. 

(~ ) :  Suppose, contrariwise, that (1*,) is not uniformly s-bounded. Then 
we may assume, by passing to a subsequence if necessary, that there exist a 
neighborhood U of 0 in S and a sequence (ai)iE~o E J(L) such that 

Ixi(ai) q~ U gi ~ to (4.3) 

We may assume that U is a d-neighborhood of 0 for some d ~ ~ .  Now to 
get the desired contradiction to (4.3), one basically repeats the proof of 
Theorem 4.1, and uses the fact that Cafiero's theorem holds for Boolean 
tings with SCP (Weber, 1986, Corollary 4.3 and w We omit the details, u 

Theorem 4.4 (Nikodym's Convergence Theorem for WSIP-OAs). Let L 
be a WSIP-OA and (P~,)n~o, C_ sa(L, S). If 

lim I*,(a) exists in S and equals l*0(a) Va ~ L 
n ---~co 

and Ixn is order continuous for each n E to\{0}, then (P~,)n~o, is uniformly 
order continuous. 

Proof By Theorem 4.1, (ixn)nEo~ is uniformly s-bounded. Suppose, con- 
trariwise, that (Izn)n~o, is not uniformly order continuous. Then, by definition 
of uniform order continuity, we may assume, by passing to a subsequence 
if necessary, that there exist d E ~ ,  ~ > 0, and a decreasing sequence (ai)i~o, 
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C L with ^;~,o ai = 0 such that 

d(l~i(ai), O) :> e Vi ~ to 

Choose ko = 1. Since ixk o is order continuous, ~kl ~ to\{0} such that 

d(P~o(ak~), O) < -~ 

(4.4) 

Since ~ is order continuous, ~k2 ~ to\ {0, 1 . . . . .  kj } such that 

E 
d(Ixkl(a~2), O) < -~ 

Continuing inductively, we obtain a strictly increasing sequence (kj)y~,, of 
natural numbers such that 

d(I.zkj(akj+O, 0) < ~ Vj E to (4.5) 

Since akj+~ -< ak~ Vj ~ to, the OMI implies that 

akj = akj+l �9 (aki+ 1 �9 a~j)' 

Set 

Vj to 

by := (akj+, �9 af, j)' Vj ~ co 

We claim that (bj-)j~o, is jointly orthogonal. To see this, let i, j ~ oJ, i v~ 
j. We may assume that i < j. Then i + 1 ----- j and we have 

= a '~' -- ~ < O a '  = b[ bj (akj+l G k? < akj aki+! - -  aki+l ki 

Thus (bj)j~,~ is pairwise orthogonal. Since every chain in an OA is jointly 
compatible (Habil, 1994a, Lemma 4.1), it follows that there exists a block 
B of L such that (ai)i~,.o C n .  Hence by = (akj+l ~ aj, j)' ~ B Vj  E oJ and 
therefore (bj)y~,o ~ J(L). This proves the claim. 

Since akj = akj+~ �9 by Vj ~ to, the additivity of ~kj implies that 

~kj(akj) = I-tkj(akj+l) + ~kj(by) Vj ~ to 

so, by (3.2), 

d(Ixkj(akj), O) = d(I.Lk~(bi) + I.zkj(akj+,), O) 

<<-. d(txkj(bj), O) + d(Ixkfakj+,), O) 

which, by the use of (4.4) and (4.5), implies that 
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d(ixk~(bj), O) >- d(ixk~(akj), O) -- d(~kj(a,j+,), O) 

> ~  2 2 V j e t o  

The last inequality shows that (ix,)n~,o cannot be uniformly s-bounded, which 
is a contradiction, m 

The next result shows that if S in Theorem 4.4 is assumed to be a 
Hausdorff topological Abelian group, then it is not necessary to hypothesize 
the s-boundedness of Ix0- 

Corollary 4.5. Let L be a WSIP-OA, S a Hausdorff topological Abelian 
group, and (ixn)n~mlO~b C_ sa(L, S). If 

lim Ixn(a) = Ixo(a) Va e L 
n...->o~ 

and IX~ is order continuous for each n e ~o\{0}, then (Ix~)n~, is uniformly 
order continuous. 

Proof. By Theorem 4.2, Ix0 �9 sa(L, S). Thus (IX~)n~,~ Q sa(L, S) and 
therefore (IX~),~,o is uniformly order continuous by Theorem 4.4. �9 

Remark 4.6. Note that Theorems 4.1-4.4 and Corollary 4.5 are also 
valid for WSCP-OAs since every WSCP-OA is also a WSIP-OA and they 
are also valid for SIP-OMLs (and, hence, for SCP-OMLs) since every SIP- 
OML is a WSIP-OA. Note further that these results are valid for ~-orthoalge- 
bras since, by part 3 of Remark 2.4, every ~r-orthoalgebra is a WSCP-OA. 
Thus Theorem 4.1 contains the results (5.1) and (6.1) of D'Andrea and De 
Lucia (1991) and the main theorem of Morales (1988) and Theorem 4.4 
contains the corollary to the main theorem of Morales (1988). 

The remaining part of this section is devoted to proving a Nikodym- 
Vitali-Hahn-Saks theorem for ~-additive functions defined on a cr-orthoalge- 
bras. we start with the following definition. 

Definition 4. 7. Let L be a ~-orthoalgebra and S a HUS. A function ix: 
L ---> S is called countably additive (or ~-additive) iff for every (ai)i~,o �9 
J(L), the infinite series 

IX( O ai) = 2~,o ~(ai) 
i ~  

converges in S. Note that every countably additive Ix: L --> S is, in particular, 
finitely additive and s-bounded whenever S is a group. In fact, let (ai)i~o~ E 

J(L), d �9 ~ ,  and ~ > 0 be given. By the countable additivity of ix, 3k0 e 
~o such that Vk -> k0, we have 

d(]~k=0 Ix(a/), IX( G ai)) < r 
i~., 2 
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Since S is a group, d is invariant. So this and the triangle inequality imply 
that gk  > ko, we have 

d(ix(ak), O) = d(ix(ak) + s Iz(ai), k-i ~i=0 ~(ai)) 

= d(E/~=o ~(ai), k-I ~i=O Ix(ai)) 

--< d(E~=0 Ix(ai), IX( O ai)) + d(Zkis-d Ix(ai), IX( �9 ai)) 

< e  

Thus IX is s-bounded. 

From now on the symbol ca(L, S) will denote the set of  all countably 
additive functions defined on a a-orthoalgebra L with values in a HUS S. 

The following useful lemma is a generalization of Lemma 2.2, which 
appears in D'Andrea and De Lucia (1991) without proof, for orthoalgebras. 

Lemma 4.8. Let L be a r and (ixn)n~ C_ ca(L, S) be 
uniformly s-bounded. If(ai)i~o~ ~ J(L), then (ixn(ai))iE~ is summable uniformly 
i n n  Eto.  

Proof We need to show that for every d e ~ and every e > 0, 3F* = 
F*(d, e) such that 

d(]~iev I~,(ai), I x n ( ~ i ~  ai)) < e 
VF ~ ~ ( t o )  with F_DF*  and Vn ~ to 

Suppose that this is false. Then 3d ~ ~ and 3e > 0 such that for every F 
E ~(to), 3K(F) ~ ~(to) with K(F) D F and 

sup d(Ei~X~F) Ixn(ai), ~ n ( e i ~  ai)) > ~. 
n~o 

By the finite additivity of each Ix, and by the generalized associativity of G 
(Habil, 1994a, Theorem 3.16), we have 

~Ln(~iEto ai) = IXn(~I~i~K(F) ai) + ],Ln(~i~to\K(F)ai) 

So, by the semi-invariance of d, we obtain 

e < sup d(~i~K(V) Ix.(ai) + O, ~n(E]~i~K(F)ai) -k Ixn(~ia~o\K(F)ai) ) 
n 

--< sup d(0, Ixn(E]~iEo~\K(F)ai)) 
n 

Thus for each F e ~(to) we may (and do) choose an n = n(F) ~ to such that 
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d(~n(F)(~ieco\K(V)ai), O) > ~- (*)  

Note that the countable additivity of each ~n(r) implies that there exists H(F) 
�9 ~(CO\K(F)) such that 

d(tx.(~3(Oi~H(F)ai), I~n(V)(~iEco\K(F)ai)) < -~ 

So the triangle inequality and (*) yield that VF �9 ~(CO), we have 

d(Ix~(~(@i~M(~3ai), O) >-- d(la.n(V)(~i~co\K(F)ai), O) 

-- d(~n(F)(OieH(F)ai)  , ~n(F)(Oieco\K(F)ai) 

6 6 ~ - - - - > - -  
2 2 

Thus we can successively choose sets F0, Fl, F2 . . . .  in ~(CO) and correspond- 
ing triples (K(Fo), H(Fo), n(Fo)), (K(F1), n (FO,  n(F1)), (K(F2), H(F2), n(F2)), 
. . .  such that 

n(Fi) �9 CO Vi  �9 CO 

Fi C K(Fi) �9 ~(CO) k/i �9 CO 

H(Fo) �9 ~(CO\K(Fo)), H(Fi) �9 ~(CO\(K(Fi) U i-l o j=0 n(Fj))) 

and 

Vi > -- 1 

E 
d(b~n(Fj)(Oi~(Fj)ai), O) > -~ Vj  �9 CO 

Now f o r j  = 0, 1, 2 . . . . .  set cj "= Oi~H(Fj)ai. Since (ai)i~,o �9 J(L) and 
(H(Fj))j~o, ___ ~(co) is disjoint, we see that (cj)j~o, �9 J(L) and that Vj �9 co, 

E 
d(p~(Fj)(cj), O) > 

This contradicts the uniform s-boundedness of (~Ln)neto. [] 

Definition 4.9. A subset M C ca(L, S) is called uniformly countably 
additive iff for every (ai)i~o e J(L), we have 

].s ai) = ~ieco I~(ai) uniformly in p~ e M 

Now, we are ready to state and prove a Nikodym-Vitali-Hahn-Saks 
theorem for cr-orthoalgebras. 
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Theorem 4.10 (Nikodym-Vitali-Hahn-Saks Theorem for cr-Orthoalge- 
bras). Let L be a o'-orthoalgebra and let S be a Hausdorff topological Abelian 
group. If (IX,)n~o\10} C ca(L, S) is such that 

lim ~n(a) = p~o(a) Va ~ L 
n ---~0o 

then tx0 E ca(L, S) and (P~,),~o is uniformly countably additive. 

Proof Let (P~,),~,o\{o} be as above. Since S is a group, the remark that 
follows Definition 4.7 shows that ca(L, S) C sa(L, S). Let (ai)ie~o E J(L). 
Since L is a o--orthoalgebra, we may write X := {ai: i E to} U { (Gi~  a~)' }. 
Then, by Lemma 3.8 of Habil (1994a), �9 X = 1. Hence, by Theorem 3.11 
of Habil (1994a), B := {GT: T C X} is a complete Boolean subalgebra of 
L containing X. We now have ([.LnlB)nEto\{O} C sa(B, S) and lim,~oo ~n(b) = 
p~o(b) Vb ~ B. So, by the Brooks-Jewett theorem for cr-orthoalgebras (see 
Theorem 4.2 and Remark 4.6), (p~, I B),~,o is uniformly s-bounded. As (ai)i~o 

J(B), it follows that 

lim ~,(ai) = 0 uniformly in n ~ ~o 
i---~oo 

This proves that (~,),~,o is uniformly s-bounded. Now, by Lemma 4.8, we 
infer that (~,),,0,\{01 is uniformly countably additive. 

It remains to show that ~o E ca(L, S). Let (ai)i~o ~ J(L), d ~ 9 ,  and 
�9 > 0 be given. By the uniform countable additivity of (IZn),~\{o}, 3Fo 
~(to) such that VF E ~(to) with F0 C F and Vn ~ to\{0}, we have 

d(~n(~i~oai), ~,i~Fl~n(ai)) < �9 (*) 

Hence, by continuity of d and of addition in S, we have VF E ~(to) with 
F0 C_ F that 

d(l~o(Gi~o, ai), ~i~V~O(ai)) = d(lim ~.(Oi~,~ai), ~iEe lim ~.(ai)) 

= d(lim ~n(~)iEtoai), lim ~ieF~n(ai)) 
n--a. .~ n-->oo 

= lim d(Iz,(Gi~ai), EiEF ~n(ai)) 
rt--->oo 

(*) 

Therefore P~0 ~ ca(L, S). �9 

Remark 4.11. If P is an orthomodular poset, then it is not difficult to 
show (Habil, 1994a, Lemma 4.6) that P is o--orthocomplete iff P is a 
tr-orthoalgebra. In this case, 
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~]~i~o~ ai = Vi~o~ ai for all pairwise orthogonal (ai)iEo~ C P 

Therefore, our definitions of countable additivity and uniform countable 
additivity coincide with the ones that are given in the literature (D'Andrea 
and De Lucia, 1991; Cook, 1978). Furthermore, since every o--orthocomplete 
orthomodular poset is a o--orthoalgebra, we conclude that Theorem 4.10 
contains Proposition 6.4 of D'Andrea and De Lucia (1991) and Theorem 4 
of Cook (1978) in the special case when the o--orthoalgebra L is assumed to 
be a o'-orthocomplete orthomodular poset. 

We conclude this section by giving an example which shows that there 
is no Nikodym boundedness theorem for cr-orthoalgebras (or even complete 
orthomodular lattices). Indeed, the next example provides a complete ortho- 
modular lattice, a Hausdorff uniform topological group S, and an M C_ 
sa(L, S) such that M(a) = {ix(a): ix E M} is bounded in S [see Weber (1986) 
for the definition] for every a ~ L, and yet M(L) := {it(a): p~ ~ M, a E L} 
is not bounded in S. 

Example 4.12. Let B be the Boolean algebra of all finite or cofinite 
subsets of N, and for every n ~ N define 8.: B ---> R by 

{0 if n E E ~ ( N )  
~ . (E )=  if n ~ E e ~(N) 

and 

8.(E) = - 8 . ( N \ E )  if E e c~(o0 

Clearly, (8.).~N is a sequence of bounded, countably additive measures on 
B. Let L := oBi, the horizontal sum of Bi, i E N, where each B i is an 
isomorphic copy of B [see Kalmbach (1983) for the definition of horizontal 
sum]. It is not difficult to check that L is a complete lattice. For each j 

J. N, define functions ix r Bi ---> R by 

J i~j Vi ~ N ixi = 

Then, for each n e N, define v,: L ---> R by 

vn(E) = /x~(E) if E E Bi 

Clearly, (v,)n~N is a sequence of additive and bounded functions on L. More- 
over, it is not difficult to see that: 

(i) limn(SUpe~L [v,(E) I) = +~ .  
(ii) For every disjoint sequence (Em)m~N in L, there exists i E N such 

that (Em)m~N C_ Bi and 

sup{[vn(Em)l: n, m ~ N} = i < 
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Let 0, 1 ~ E c L. Then E ~ B i for some i e N; and, hence, using (ii), 
we obtain 

sup{l .(E)l: n ~ N} = i < 

Thus, (V,)n~N is pointwise bounded on L. However, (i) shows that (Vn)n~N 
is not uniformly bounded on L. We conclude that there is no Nikodym 
boundedness theorem for orthomodular lattices even under the assumption 
of completeness. 
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